Carrasco, J. F., Bozkurt, D. & Cordero, R. R. A review of the observed air temperature in the Antarctic Peninsula. Did the warming trend come back after the early 21st hiatus?. Polar Sci. 28, 100653 (2021).
McCarthy, A. H., Peck, L. S. & Aldridge, D. C. Ship traffic connects Antarctica’s fragile coasts to worldwide ecosystems. Proc. Natl Acad. Sci. USA 119, e2110303118 (2022).
Overview of Antarctic vessel tourism: the 2023–24 season, and preliminary estimates for 2024–25. IAATO https://iaato.org/download/iaato-overview-of-antarctic-vessel-tourism-the-2023-24-season-and-preliminary-estimates-for-2024-25-atcm46_ip102_rev1_e_/ (2024).
COMNAP Antarctic Facilities List (Council of Managers of National Antarctic Programs, 2024); https://www.comnap.aq/s/Facilities_Nov2024.csv
Magalhães, N. et al. Seasonal changes in black carbon footprint on the Antarctic Peninsula due to rising shipborne tourism and forest fires. Sci. Adv. 10, eadp1682 (2024).
Cordero, R. R. et al. Black carbon footprint of human presence in Antarctica. Nat. Commun. 13, 984 (2022).
Khan, A. L., Klein, A. G., Katich, J. M. & Xian, P. Local emissions and regional wildfires influence refractory black carbon observations near Palmer Station, Antarctica. Front. Earth Sci. 7, 49 (2019).
Khan, A. L. et al. Near-surface refractory black carbon observations in the atmosphere and snow in the McMurdo dry valleys, Antarctica, and potential impacts of Foehn winds. J. Geophys. Res. Atmos. 123, 2877–2887 (2018).
Chen, L. C., Maciejczyk, P. & Thurston, G. D. in Handbook on the Toxicology of Metals (eds Nordberg, G. F. & Costa, M.) 137–182 (Academic Press, 2022).
Bargagli, R. & Rota, E. Environmental contamination and climate change in Antarctic ecosystems: an updated overview. Environ. Sci. Adv. 3, 543–560 (2024).
Matias, R. S. et al. Mercury biomagnification in an Antarctic food web of the Antarctic Peninsula. Environ. Pollut. 304, 119199 (2022).
Bargagli, R., Sanchez-Hernandez, J. C., Martella, L. & Monaci, F. Mercury, cadmium and lead accumulation in Antarctic mosses growing along nutrient and moisture gradients. Polar Biol. 19, 316–322 (1998).
Stark, J. S. et al. Contamination of the marine environment by Antarctic research stations: monitoring marine pollution at Casey station from 1997 to 2015. PLoS ONE 18, e0288485 (2023).
de Lima Neto, E. et al. Soil contamination by toxic metals near an Antarctic refuge in Robert Island, Maritime Antarctica: a monitoring strategy. Water Air Soil Pollut. 228, 1–9 (2017).
Braga Bueno Guerra, M. et al. Heavy metals contamination in century-old manmade technosols of Hope Bay, Antarctic Peninsula. Water Air Soil Pollut. 222, 91–102 (2011).
Chen, L. et al. Regional aerosol optical depth over Antarctica. Atmos. Res. 308, 107534 (2024).
Fan, S., Gao, Y., Sherrell, R. M., Yu, S. & Bu, K. Concentrations, particle-size distributions, and dry deposition fluxes of aerosol trace elements over the Antarctic Peninsula in austral summer. Atmos. Chem. Phys. 21, 2105–2124 (2021).
Bertler, N. et al. Snow chemistry across Antarctica. Ann. Glaciol. 41, 167–179 (2005).
Kakareka, S., Kukharchyk, T. & Kurman, P. Trace and major elements in surface snow and fresh water bodies of the Marguerite Bay Islands, Antarctic Peninsula. Polar Sci. 32, 100792 (2022).
Pizarro, J. et al. Contaminant emissions as indicators of chemical elements in the snow along a latitudinal gradient in southern Andes. Sci. Rep. 11, 14530 (2021).
Alfonso, J. A. et al. Elemental and mineralogical composition of the Western Andean Snow (18°S–41°S). Sci. Rep. 9, 8130 (2019).
Grigholm, B. et al. Chemical composition of fresh snow from Glaciar Marinelli, Tierra del Fuego, Chile. J. Glaciol. 55, 769–776 (2009).
Gabrielli, P. et al. Variations in atmospheric trace elements in Dome C (East Antarctica) ice over the last two climatic cycles. Atmos. Environ. 39, 6420–6429 (2005).
Bertinetti, S., Ardini, F., Vecchio, M. A., Caiazzo, L. & Grotti, M. Isotopic analysis of snow from Dome C indicates changes in the source of atmospheric lead over the last fifty years in East Antarctica. Chemosphere 255, 126858 (2020).
Uetake, J. et al. Airborne bacteria confirm the pristine nature of the Southern Ocean boundary layer. Proc. Natl Acad. Sci. USA 117, 13275–13282 (2020).
Asmi, E. et al. Primary sources control the variability of aerosol optical properties in the Antarctic Peninsula. Tellus Ser. B 70, 1–16 (2018).
Tuohy, A. et al. Transport and deposition of heavy metals in the Ross Sea Region, Antarctica. J. Geophys. Res. Atmos. 120, 10–996 (2015).
Wolff, E. W. & Peel, D. A. Closer to a true value for heavy metal concentrations in recent Antarctic snow by improved contamination control. Ann. Glaciol. 7, 61–69 (1985).
Leal, M. A. et al. Atmospheric impacts due to anthropogenic activities in remote areas: the case study of Admiralty Bay/King George Island/Antarctic Peninsula. Water Air Soil Pollut. 188, 67–80 (2008).
Hong, S. M., Lluberas, A., Lee, G. W. & Park, J. K. Natural and anthropogenic heavy metal deposition to the snow in King George Island, Antarctic Peninsula. Ocean Polar Res. 24, 279–287 (2002).
Dixon, D. A. et al. Variations in snow and firn chemistry along US ITASE traverses and the effect of surface glazing. Cryosphere 7, 515–535 (2013).
Grotti, M. et al. Year-round record of dissolved and particulate metals in surface snow at Dome Concordia (East Antarctica). Chemosphere 138, 916–923 (2015).
Casey, K. A., Kaspari, S. D., Skiles, S. M., Kreutz, K. & Handley, M. J. The spectral and chemical measurement of pollutants on snow near South Pole, Antarctica. J. Geophys. Res. Atmos. 122, 6592–6610 (2017).
Thamban, M. & Thakur, R. C. Trace metal concentrations of surface snow from Ingrid Christensen Coast, East Antarctica—spatial variability and possible anthropogenic contributions. Environ. Monit. Assess. 185, 2961–2975 (2013).
Kakareka, S., Kukharchyk, T. & Kurman, P. Study of trace elements in the surface snow for impact monitoring in Vecherny Oasis, East Antarctica. Environ. Monit. Assess. 192, 1–15 (2020).
Brooks, S. T., Jabour, J. & Bergstrom, D. M. What is ‘footprint’in Antarctica: proposing a set of definitions. Antarct. Sci. 30, 227–235 (2018).
da Silva, J. R. M. C., Bergami, E., Gomes, V. & Corsi, I. Occurrence and distribution of legacy and emerging pollutants including plastic debris in Antarctica: sources, distribution and impact on marine biodiversity. Mar. Pollut. Bull. 186, 114353 (2023).
Kavan, J., Nývlt, D., Láska, K., Engel, Z. & Kňažková, M. High‐latitude dust deposition in snow on the glaciers of James Ross Island, Antarctica. Earth Surf. Proc. Land. 45, 1569–1578 (2020).
Gassó, S. & Torres, O. Temporal characterization of dust activity in the Central Patagonia desert (years 1964–2017). J. Geophys. Res. Atmos. 124, 3417–3434 (2019).
Revell, L. E. et al. The sensitivity of Southern Ocean aerosols and cloud microphysics to sea spray and sulfate aerosol production in the HadGEM3-GA7.1 chemistry–climate model. Atmos. Chem. Phys. 19, 15447–15466 (2019).
Gray, A. et al. Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. Nat. Commun. 11, 1–9 (2020).
Khan, A. L., Dierssen, H. M., Scambos, T. A., Höfer, J. & Cordero, R. R. Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: approaches to spectrally discriminate red and green communities and their impact on snowmelt. Cryosphere 15, 133–148 (2021).
Jiang, X. et al. Spatial variations of Pb, As, and Cu in surface snow along the transect from the Zhongshan Station to Dome A, East Antarctica. Sci. Cold Arid Reg. 10, 219–231 (2018).
Veysseyre, A. et al. Heavy metals in fresh snow collected at different altitudes in the Chamonix and Maurienne Valleys, French Alps: initial results. Atmos. Environ. 35, 415–425 (2001).
Rogan-Finnemore, M. et al. Icebreaking polar class research vessels: new Antarctic fleet capabilities. Polar Rec. 57, e46 (2021).
Fishery Summary 2024: Euphausia superba in Area 48, CCAMLR Secretariat (CCAMLR, 2025); https://fishdocs.ccamlr.org/FishSum_48_KRI_2024.pdf
Walton, D. W. & Shears, J. The need for environmental monitoring in Antarctica: baselines, environmental impact assessments, accidents and footprints. Int. J. Environ. Anal. Chem. 55, 77–90 (1994).
Brooks, S. T. et al. Systematic conservation planning for Antarctic research stations. J. Environ. Manag. 351, 119711 (2024).
Tejedo, P. et al. What are the real environmental impacts of Antarctic tourism? Unveiling their importance through a comprehensive meta-analysis. J. Environ. Manag. 308, 114634 (2022).
ARK Voluntary Measures (Association of Responsible Krill Harvesting Companies, 2018); https://www.ark-krill.org/ark-vrz
Doherty, S. J. et al. Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow. J. Geophys. Res. Atmos. 118, 5553–5569 (2013).
Kang, C. M. et al. Interlab comparison of elemental analysis for low ambient urban PM2.5 levels. Environ. Sci. Technol. 48, 12150–12156 (2014).
Warren, S. G. & Clarke, A. D. Soot in the atmosphere and snow surface of Antarctica. J. Geophys. Res. Atmos. 95, 1811–1816 (1990).
Mathematica Online (Wolfram Research, Inc., 2024).
Algeo, T. J. & Liu, J. A re-assessment of elemental proxies for paleoredox analysis. Chem. Geol. 540, 119549 (2020).
Sun, Y., Wu, F., Clemens, S. C. & Oppo, D. W. Processes controlling the geochemical composition of the South China Sea sediments during the last climatic cycle. Chem. Geol. 257, 240–246 (2008).
Gelado-Caballero, M. D. et al. Long-term aerosol measurements in Gran Canaria, Canary Islands: particle concentration, sources and elemental composition. J. Geophys. Res. Atmos. 117, D03304 (2012).
Wedepohl, K. H. The composition of the continental crust. Geoch. Cosm. Act. 59, 1217–1232 (1995).
Casalino, C. A., Malandrino, M., Giacomino, A. & Abollino, O. Total and fractionation metal contents obtained with sequential extraction procedures in a sediment core from Terra Nova Bay, West Antarctica. Antar. Sci. 25, 83–98 (2013).
Cerdeiro, D. A., Komaromi, A., Liu, Y. & Saeed, M. World Seaborne Trade in Real Time: A Proof of Concept for Building AIS-Based Nowcasts from Scratch (No. 20–57) (International Monetary Fund, 2020).
Global shipping traffic density. World Bank Group https://datacatalog.worldbank.org/search/dataset/0037580/Global-Shipping-Traffic-Density (2023).
Hersbach, H. et al. ERA5 monthly averaged data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store https://doi.org/10.24381/cds.f17050d7 (2025).
ERA5 monthly averaged data on single levels from 1940 to present. Climate Data Store https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=download (2024).
Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. 96, 2059–2077 (2015).
Global Data Assimilation System (GDAS1) Archive Information (NOAA Air Resources Laboratory, 2004); http://ready.arl.noaa.gov/gdas1.php
Su, L., Yuan, Z., Fung, J. C. & Lau, A. K. A comparison of HYSPLIT backward trajectories generated from two GDAS datasets. Sci. Total Environ. 506, 527–537 (2015).
Brooks, S. T. Our Footprint on Antarctica—Buildings, Disturbance version 2 (Australian Antarctic Data Centre, 2019); https://doi.org/10.26179/5dc8db48eb58e
Cordero, R. R. XRF data. Zenodo https://doi.org/10.5281/zenodo.15823568 (2025).
Cordero, R. R. PCA code. Zenodo https://doi.org/10.5281/zenodo.15823599 (2025).
Deep Field and Air Overview of Antarctic Tourism: 2023–24 Season and Preliminary Estimates for 2024–25 Season (IAATO, 2024); https://iaato.org/system/files?file=2025-01/ATCM46_ip103_e_IAATO-Deep-Field-and-Air-Overview-of-Antarctic-Tourism-2023-24-Season-and-Preliminary-Estimates-for-2024-25-Season.pdf
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
